
Compilation project
M1 Informatique / M1 Mosig

Gwenaël Delaval Maxime Lesourd

2023–2024



Global presentation Technical insights Why ?

Objectives

Compiler programming

Writing a compiler for a mini-language (MinCaml, subset of OCaml)
Goal : assembly generation
Using generators for lexical analysis and parsing
Understanding how computations are translated by machines

Software engineering

Write a robust software
Understanding and fulfilling specifications
Team work
Using modern development methods
Using versioning (Git)
Tests and evaluations



Global presentation Technical insights Why ?

Organization

4 week project

Autonomous team work

Weekly reports to tutors

Monitoring and assistance from tutors



Global presentation Technical insights Why ?

The MinCaml compiler toolchain

From the MinCaml programming language to assembly code, and so on...

MinCaml source .ml your compiler assembly code .s

assembler

object code .olinker (ld)executable



Global presentation Technical insights Why ?

What is provided

Skeleton code in OCaml and Java, with lexer/parser and minimal tests

MinCaml source .ml

compiler in OCaml

compiler in Java

assembly



Global presentation Technical insights Why ?

Compiler passes

Material and support provided for guidance
http://esumii.github.io/min-caml/paper.pdf

let rec fact x =

if x = 0 then 1

else x * fact (x-1)

and apply f x = f x in

apply fact 3

A program is an
expression

Type annotations are
optional and inferred by
the compiler

A function can have
another function as
parameter

.ml

Lexing

Parsing

Type inference

K-Normalization

α-conversion

β-reduction

let-reduction

Inlining

Constant folding

Unused definitions

Closure conversion

Virtual code generation

Immediate optimization

Register allocation

Assembly generation

.s

http://esumii.github.io/min-caml/paper.pdf


Global presentation Technical insights Why ?

Why MinCaml ?

Simple language but expressive enough

Adapted for a short project
Interesting compiling problems (optimizations, closures)
Generated code efficiency comparable to reference compilers

Functional programming

Used more and more in modern programming frameworks
Functional features included in core programming languages :
C++0x11, Java 1.8, Ruby, Python, Go, Swift...

Numerous possible extensions : garbage collector, polymorphism,
pattern matching, ...



Global presentation Technical insights Why ?

What links with SLPC/PLCD?

In SLPC/PLCD : compilation of an imperative language (While)

Functional language : additional features (higher-order,
polymorphism,...) and compilation concepts (α- and β-conversion,
closures)

Typing vs type inferrence (strong type checking without type
annotations)

Different optimization phases

−→ not strict application of methods seen in SLPC/PLCD, but
opportunity to learn more concepts and methods !


	Global presentation
	

	Technical insights
	Compiler toolchain

	Why ?
	


