Compilation project

M1 Informatique / M1 Mosig

Gwenaél Delaval Maxime Lesourd

2023-2024

Global presentation
e0

Objectives

@ Compiler programming
o Writing a compiler for a mini-language (MinCaml, subset of OCaml)
o Goal : assembly generation
e Using generators for lexical analysis and parsing
e Understanding how computations are translated by machines

@ Software engineering

Write a robust software

Understanding and fulfilling specifications
Team work

Using modern development methods
Using versioning (Git)

Tests and evaluations

Global presentation
o]]

Organization

@ 4 week project
@ Autonomous team work
@ Weekly reports to tutors

@ Monitoring and assistance from tutors

Technical insights
@00

The MinCaml compiler toolchain

From the MinCaml programming language to assembly code, and so on...

(MinCamI source .ml [assembly code .s]

assembler

Technical insights
oeo

What is provided

Skeleton code in OCaml and Java, with lexer/parser and minimal tests

|compi|er in OCaml |

£

[MinCamI source .mI]

|compiler in Java |

Compiler passes

Technical insights
ooe

Material and support provided for guidance
http://esumii.github.io/min-caml/paper.pdf

let rec fact x =
if x = 0 then 1

else x * fact (x-1)

and apply f x = f x in
apply fact 3

@ A program is an
expression

@ Type annotations are
optional and inferred by
the compiler

@ A function can have
another function as
parameter

(ml)

| K-Normalization |

«a-conversion

let-reduction

| Constant folding |

v
| Unused definitions |

| Closure conversion |

|Virtua| code generation |
v
| Immediate optimization |
v
| Register allocation |

| Assembly generation |

http://esumii.github.io/min-caml/paper.pdf

Why MinCaml ?

@ Simple language but expressive enough

o Adapted for a short project
o Interesting compiling problems (optimizations, closures)
o Generated code efficiency comparable to reference compilers

@ Functional programming

e Used more and more in modern programming frameworks
e Functional features included in core programming languages :
C++0x11, Java 1.8, Ruby, Python, Go, Swift...

@ Numerous possible extensions : garbage collector, polymorphism,
pattern matching, ...

What links with SLPC/PLCD ?

@ In SLPC/PLCD : compilation of an imperative language (While)

e Functional language : additional features (higher-order,
polymorphism,...) and compilation concepts (- and S-conversion,
closures)

e Typing vs type inferrence (strong type checking without type
annotations)

o Different optimization phases

— not strict application of methods seen in SLPC/PLCD, but
opportunity to learn more concepts and methods !

	Global presentation
	

	Technical insights
	Compiler toolchain

	Why ?
	

