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Motivation of this session

Develop intuition

Survey of some proof technics (training)

Gain experience
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The target problem

Sum of n first cubes
Cn =

∑n
k=1 k

3
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How to start?

Take a look at the asymptotic behaviour1

Investigate the first ranks to get an idea

C1 = 1
C2 = 1 + 8 = 9
C3 = 1 + 8 + 27 = 36
C4 = 1 + 8 + 27 + 64 = 100
C5 = 1 + 8 + 27 + 64 + 125 = 225

All these values are perfect squares:
1, 32, 62, 102and152.

1this is easy to show it is in Θ(n4)
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A more attentive observation evidences a link with the
triangular numbers2 ∆n

1, 3, 6, 10 and 15.

Proposition

Cn = ∆2
n

This is a just guess, not a proof!

2defined as the sum of the first integers
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The classical way to solve

Prove by recurrence on n

Base case.
C1 = 1 = 12 is true since ∆1 = 1

Induction step.
Assume the proposition is true for n.
Cn+1 = Cn + (n + 1)3

Cn+1 = ∆2
n +(n+1)3 by applying the recurrence hypothesis

= 1
4(n + 1)2n2 + (n + 1)3

= 1
4(n + 1)2(n2 + 4 · (n + 1))

= 1
4(n + 1)2(n + 2)2 = ∆2

n+1
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Other ways to solve the problem

Let us investigate other directions that will strengthen our
understanding of the the mathematical object Sum of cubes.

I propose to concentrate on the simplified problem of computing
the sum of the first n odd integers.
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Sum of odds

The problem. Determine the sum of the first odd integers.
denoted by Sn =

∑n
k=1(2k − 1).

This result may be established by using Fubini’s principle.

Each integer k is represented by k tokens.
The arrangement of the tokens gives two ways for counting.
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The second arrangement is clearly a perfect square.

We deduce: Sn = n2

The figure gives only the principle (for n = 5) and should be
proved for any n, this is easy by any method and is let to the
reader.
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Coming back to the original problem on cubes

Proposition:

For all n,
n∑

k=1

k3 =
∆n∑
k=1

(2k − 1) = ∆2
n (1)

We proved previously∑∆n
k=1 (2k − 1) = ∆2

n and∑n
k=1 k3 = ∆2

n

Thus, by transitivity, for all n,
∑n

k=1 k3 =
∑∆n

k=1 (2k − 1)
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Direct proof of the last equality

We take the odd integers in order and arrange them into groups
whose successive sizes increase by 1 at each step, as follows:

group 1 (size 1): 1,
group 2 (size 2): 3, 5,
group 3 (size 3): 7, 9, 11,
group 4 (size 4): 13, 15, 17, 19
...

...

(2)
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Features of Table (2)

We observe first that3 the i elements of the ith group add up to i3:

group 1 (size 1): 1, : sum = 13

group 2 (size 2): 3, 5, : sum = 23

group 3 (size 3): 7, 9, 11, : sum = 33

group 4 (size 4): 13, 15, 17, 19 : sum = 43

3at least within the illustrated portion of the table
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We observe next that, by construction, the ith group/row of odd
integers in the table consists of the i consecutive odd numbers
beginning with the (∆i−1 + 1)th odd number, namely, 2∆i−1 + 1.

Since consecutive odd numbers differ by 2, this means that the ith
group (for i > 1) comprises the following i odd integers:

2∆i−1 + 1, 2∆i−1 + 3, 2∆i−1 + 5, . . . , 2∆i−1 + (2i − 1)

13 / 21



Maths for Computer Science Sum of cubes

Therefore, the sum of the i integers in group i , call it σi , equals

σi = 2i∆i−1 +
(
1 + 3 + · · ·+ (2i − 1)

)
= 2i∆i−1 + (the sum of the first i odd numbers)

= 2i∆i−1 + i2

By direct calculation, then,

σi = 2i · i(i − 1)

2
+ i2 = (i3 − i2) + i2 = i3

The proof is now completed by concatenating the rows of the
triangle and observing the pattern that emerges:

(1) + (3 + 5) + (7 + 9 + 11) + · · · = 13 + 23 + 33 + · · ·
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Pictorial proof

We now present graphically the relation between sums of perfect
cubes and squares of triangular numbers.

This illustration provides a non-textual way to understand this
result, and it provides a fertile setting for seeking other facts of
this type.
For all k,

13 + 23 + · · ·+ k3 = ∆2
k
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Proof
We develop a recurrence that reflects the structure of the previous
table.
The intuition of the analogy comes from the previous analysis
when the cubes k3 are decomposed into k squares k2

Base case.
13 = 1 = ∆2

1

While this first (and obvious) case is enough for the induction, it
does not tell us much about the structure of the problem.
Therefore, we consider also the next step k = 2:

13 + 23 = 9 = ∆2
2

1"
3" 5"

7" 9" 11"
13" 15" 17" 19"

Figure: (Left) set {1} of group 1 and the set {3, 5} of group 2. (Right)
how to form a 3× 3 square by pictorially summing the numbers 1, 3, and
5.

Observe that we can fit the shapes from the left side of the figure
together to form the ∆2 ×∆2 square.
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Inductive hypothesis. Assume that the target equality holds for
all i < k ; i.e.,

13 + 23 + · · ·+ i3 = ∆2
i

If we go one step further, to incorporate group 3, i.e., the set
{7, 9, 11}, into our pictorial summation process, then we discover
that mimicking the previous process is a bit more complicated here.
More complicated manipulation required to form the ∆3 ×∆3

square is a consequence of the odd cardinality of the group-3 set.
We must extend our induction for the cases of odd and even k.

Inductive extension for odd k .

∆2
k = ∆2

k−1 + k3

We begin to garner intuition for this extension by comparing the
quantities ∆2

k and 1 + 23 + · · ·+ k3.
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Moving to the pictorial domain, we write k3 as k × k2, and we
distribute k × k square blocks around the ∆k−1 ×∆k−1 square, as
shown below for the case k = 3.

Because k is odd, the small squares pack perfectly since (k − 1) is
even, hence divisible by 2.
The depicted case depicts pictorially the definition of triangular
numbers: k · 1

2(k − 1) = ∆k−1.
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Inductive extension for even k .
The basic reasoning here mirrors that for odd k , with one small
difference.
Now, as we assemble small squares around the large square, two
subsquares overlap, as depicted below.
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We must manipulate the overlapped region in order to get a tight
packing around the large square.

Happily, when there is a small overlapping square region, there is
also an identically shaped empty square region, as suggested by
these two figures.
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More details.

Because (k − 2) is even, the like-configured square blocks can be
allocated to two sides of the initial ∆k−1 ×∆k−1 square (namely,
its right side and its bottom).
The overlap has the shape of a square that measures
1
2 (∆k −∆k−1) on a side.
One also sees in the figure an empty square in the extreme bottom
right of the composite ∆k ×∆k square, which matches the
overlapped square identically. This situation is the pictorial version
of the equation

∆2
k − ∆2

k−1 =
1

4
k2

(
(k + 1)2 − (k − 1)2

)
= k3

We have thus extended the inductive hypothesis for both odd and
even k , whence the result.
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