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Lecture 1 – Maths for Computer Science Multiple ways for solving a problem Summations

Context and content

The purpose of this lecture is to experience multiple ways for
solving the same mathematical problem.
Its goal is to provide the basis for gaining intuition in proving
methods.

We consider the sum of squares as an illustration.

The core analysis: Sum of squares
also called the pyramid numbers

One step further: the Tetrahedral numbers
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Sum of squares: pyramid numbers

Definition:
Sum of the n first squares:
□n =

∑n
k=1 k

2

Let us study various ways to establish and prove the sum of
squares.
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Preliminary: determine the asymptotic behavior

Rough analysis.

Upper bound

as k2 ≤ n2, ∀k ≤ n

□n ≤
∑n

k=1 n
2 = n3
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asymptotic behavior (2)

A slightly more precise analysis based on integral leads to:

□n ≤ c n3

3

In other words, the summation is in O(n
3

3 ).
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asymptotic behavior (3)
Actually, we have a bit more by bounding the sum by another
integral:

□n ≥ c ′ n
3

3

It is in Ω(n
3

3 ), thus, the sum we are looking for is Θ(n
3

3 )
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Method 1: undetermined coefficients

From the previous asymptotic analysis, we know that:

□n = α0 + α1n + α2n
2 + α3n

3

we identify the αi by taking simple values of n

□0 = α0 = 0
□1 = α1 + α2 + α3 = 1
□2 = 2α1 + 4α2 + 8α3 = 5
□3 = 3α1 + 9α2 + 27α3 = 14
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Method 1: undetermined coefficients

Let us solve this linear system.
α1 = 1− α2 − α3

2(1− α2 − α3) + 4α2 + 8α3 = 5
3(1− α2 − α3) + 9α2 + 27α3 = 14

2α2 + 6α3 = 3
6α2 + 24α3 = 11

After another substitution and some arithmetic manipulations:

α1 =
1
6 , α2 =

1
2 and α3 =

1
3

Thus, □n = n
6 + n2

2 + n3

3
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Method 2: proving by recurrence

We need here the expression beforehand and prove it.

Compute the first ranks:

n 0 1 2 3 4 5 6 7 8 9 10

n2 0 1 4 9 16 25 36 49 64 81 100

Sn 0 1 5 14 30 55 91 140 204 285 385

Guess the expression (or take it in a book):

□n = n(n+1)(2n+1)
6
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Strong induction

Basis n = 1: □1 =
(2×3)

6 = 12

Assume □n = n(n+1)(2n+1)
6

Compute □n+1 = □n + (n + 1)2

= (n + 1)n(2n+1)
6 + (n + 1)2

= (n + 1)2n
2+n+6n+6

6

= (n+1)(n+2)(2n+3)
6
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Method 3: perturb the sum

Developing two ways to compute Cn =
∑n

k=1 k
3 allows to express

□n.

1 Cn+1 = 1 +
∑n+1

k=2 k
3

= 1 +
∑n

k=1(k + 1)3

= 1 +
∑n

k=1(k
3 + 3k2 + 3k + 1)

= 1 + Cn + 3□n + 3∆n + n

2 Cn+1 = (n + 1)3 +
∑n

k=1 k
3 = (n + 1)3 + Cn

= n3 + 3n2 + 3n + 1 + Cn

Let now equal both expression to deduce □n.

1 + 3□n + 3n2+n
2 + n = n3 + 3n2 + 3n + 1

3□n = n3 + 3n2 + 2n − 3n2+n
2 = n3 + 3n2

2 + n
2
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Method 4: expand and contract the sum
□n =

∑n
k=1 k

2

=
∑n

k=1

∑k
i=1 k

= 1+(2+2)+ (3+3+3)+ (4+4+4+4)+ ...+(n+ n+ ...+ n)

= (1 + 2 + ....+ n) + (2 + 3 + ...+ n) + (3 + 4 + ...+ n) + ...+ n

=
∑n−1

k=0(∆n −∆k)

= n.∆n −
∑n−1

k=1∆k

□n = n2(n+1)
2 −

∑n−1
k=1

k2

2 − 1
2∆n−1

□n = n2(n+1)
2 − 1

2(□n − n2)− n(n−1)
4

3
2□n = 1

2(n
3 + n2 + n2 − n2−n

2 )

□n = 1
3(n

3 + 3
2n

2 + n
2 )
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Method 5: semi-graphical proof

As we already remarked, the sum can be written as:
1, 2 + 2, 3 + 3 + 3, etc.

This is ”naturally” represented by triangles of integers

Compute three rotated triangles as follows:
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Exhibit an invariant
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Gather the whole in a single triangle
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3□n = (2n + 1) ·∆n = (2n + 1) · n(n+1)
2
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3□n = (2n + 1) ·∆n = (2n + 1) · n(n+1)
2
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Method 6: derived graphical proof

Consider 3 copies of the sum represented by unit squares.
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Graphical proof
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Graphical proof
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Graphical proof

Conclusion:

The surfaces of the 3 sums perfectly fits a rectangle.

The whole area is 2n + 1 by ∆n = n(n+1)
2 .

Thus, 3□n = (2n+1)n(n+1)
2
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Tetrahedral numbers

Tetrahedral numbers

Definition:
The sum of the ∆n is denoted by: Θn =

∑n
k=1∆k

Like for the sum of squares, a way to calculate it is to
consider 3 copies of Θn and organize them as triangles.
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Exhibit an invariant
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Tetrahedral numbers
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Tetrahedral numbers

Gather the whole in a single triangle
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Tetrahedral numbers

3Θn = (n + 2) ·∆n = (n + 2) · n(n+1)
2 = n(n+1)(n+2)

2
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Tetrahedral numbers

Another (analytical) way to look at the proof

The proof is obtained by the double counting Fubini’s
principle by copying (with a rotation) the basic triangles.

The sum of the first row is equal to n + 2.
The second one is equal to 2(n − 1) + 3 + 3 = 2(n + 2).

Let us sum up the elements in row k :
∆k +∆k + k(n − k + 1) = k(k + 1) + kn − k2 + k = k(n + 2)

Thus, the global sum is equal to (n + 2)× (1 + 2 + ...+ n)

Finally, 3Θn = (n + 2)∆n
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Tetrahedral numbers

A first synthesis

We proved some results in this lecture, in particular:

Idn = 1 + 1 + ...+ 1 = n

∆n = 1 + 2 + 3 + ...+ n = 1
2 · Idn · (n + 1)

Θn = ∆1 +∆2 + ...+∆n = 1
3 ·∆n · (n + 2)

A natural question is if we can go further following the same
pattern for computing

∑n
k=1Θk , and so on.

The next family is the pentatope numbers (denoted by Πn),
defined as the sum of Θk .
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Tetrahedral numbers

More properties

If we write these numbers as polynomials of n, we obtain:

Rank 1. Idn = n

Rank 2. ∆n = 1
2n(n + 1)

Rank 3. Θn = 1
6n(n + 1)(n + 2) where 6 = 1× 2× 3

Rank 4. Πn = 1
24n(n + 1)(n + 2)(n + 3) where

24 = 1× 2× 3× 4

The next one (rank 5) is 1
5!n(n + 1)(n + 2)(n + 3)(n + 4)

As these numbers are integers
P(n) = n(n + 1)(n + 2)(n + 3) is a multiple of 4!
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Tetrahedral numbers

Exercise

Proving the expectation

Taking into account the expressions of Idn = n,
∆n = 1

2n(n + 1) and Θn = 1
3!n(n + 1)(n + 2)

Prove:
∑n

k=1Θk = 1
4!n(n + 1)(n + 2)(n + 3) by an inductive

argument on the rank
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Tetrahedral numbers

Coming back on pyramid numbers

Is there a link between pyramid and tetrahedral numbers?

Yes!

There is a link between the two first ranks: Idn and ∆n Since
n2 = ∆n +∆n−1

By summation, we deduce immediately
□n = Θn +Θn−1

The proof follows directly following this definition.
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Tetrahedral numbers

Another property

Is there a link between triangular and tetrahedral numbers?

Yes!
Using the expression of Method 4.

□n = ∆n + (∆n −∆1) + (∆n −∆2) + ...+ (∆n −∆n−1)

= n.∆n −
∑

1≤k≤n−1∆k

= n.∆n −Θn−1

□n +Θn−1 = n.∆n

This can be shown again using the expanded representation of
triangles!
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Tetrahedral numbers

Concluding remarks

We presented in this lecture many ways for solving the same
problem.

Take home message:

Everyone can find her/his own method!

The results are interesting and they show the hidden
structures of numbers.

But, more important is the way to solve and to write the
proofs.
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