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MOTIVATION FORMALIZATION GEOMETRY HINTS

1 MOTIVATION : Randomizing and Modeling

2 FORMALIZATION : the formal language of probability

3 GEOMETRY : random lines

4 HINTS AND DISCUSSION
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MOTIVATION FORMALIZATION GEOMETRY HINTS

PROBABILITY AND COMPUTER SCIENCE

Modeling

I Data modeling : text compression (entropy), algorithm analysis,...

I Performance evaluation : workload description, users profile,...

Randomization

I Probabilistic method

I Random based algorithms (cryptography)

I Simulation of systems
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MOTIVATION FORMALIZATION GEOMETRY HINTS

MR. AND MRS. SMITH

Exercice 1a

Mr. and Mrs. Smith have two children, one is a boy, what is the probability that the
other is a girl ?

Exercice 1b

Mr. and Mrs. Smith have two children, the elder is a boy, what is the probability that
the younger is a girl ?

Exercice 1c

What are the difficulties to solve such problems ?

Hint
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MOTIVATION FORMALIZATION GEOMETRY HINTS

MR AND MRS SMITH (SIMULATION)

import random
random . seed ( 4 2 )

# Mr and Mrs Smith have 2 k i d s one i s a boy .
# What i s t h e p r o b a b i l i t y t h a t t h e o t h e r i s a g i r l ?
def b i r t h ( ) :

re turn random . choice ( [ ’B ’ , ’G ’ ] )

def family ( s i z e = 2 ) :
re turn [ b i r t h ( ) f o r _ in range ( s i z e ) ]

def sample_famil ies ( s i z e = 2 , sample_size = 1 0 0 0 ) :
re turn [ family ( s i z e ) f o r _ in range ( sample_size ) ]

## i n f o r m a l t e s t s
s _ f = sample_famil ies ( 2 , 1 0 0 )
s_f_b = [ x f o r x in s _ f i f ’B ’ in x ]
s_f_bg = [ x f o r x in s_f_b i f ’G ’ in x ]
frequency = len ( s_f_bg ) / len ( s_f_b )
p r i n t ( frequency )

5 / 35Dice and other Stories



MOTIVATION FORMALIZATION GEOMETRY HINTS

PASCAL AND CHEVALIER DE MÉRÉ DISCUSSION
(SIMPLIFIED)

A Dice Game

I bet 1

I throw two dices and sum the results

I if the result is 11 or 12 you earn 11 (including your bet)

I if not you loose your bet.

Exercice 2a

The Chevalier de Méré says "playing this game a sufficiently long time and I’ll get a
fortune” and Pascal argues the contrary. Who is wrong and what were the two
arguments ?

Exercice 2b

What are the difficulties to solve such problems ?
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MOTIVATION FORMALIZATION GEOMETRY HINTS

PASCAL AND CHEVALIER DE MÉRÉ DISCUSSION
(SIMULATION)

import random
random . seed ( 4 2 )

# C h e v a l i e r de Mé r é ’ s prob l em
def dice ( f a c e s = 6 ) :

re turn random . randint ( 1 , 6 )

def play ( f a c e s =6 , sum= 1 1 ) :
re turn ( dice ( ) + dice ( ) ) >= sum

def game ( number_play = 1 0 0 ) :
re turn [ play ( ) f o r _ in range ( number_play ) ]

def average_gain ( g ) :
gain = 0
f o r b in g :

gain = gain + 10 i f b e l s e gain − 1
return gain /len ( g )

## i n f o r m a l t e s t s
p r i n t ( average_gain ( game ( 1 0 0 0 ) ) )
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MOTIVATION FORMALIZATION GEOMETRY HINTS

THE MONTY HALL PROBLEM

A TV show problem

There are 3 closed doors beside one there is a magnificent car, beside the two others
nothing.
I TV host : Please choose one door. As example you choose door 2.

I TV host : I want to help you. I open one of the remaining door with nothing. For example he
opens door 1.

I TV host : in fact you could modify your first choice, do you change your initial decision of
choosing door 2.

I As example you decide to change and you open door 3. You win if the car is beside.

Exercice 3a

What is a good strategy : change or not your initial decision ?

Exercice 3b

What are the difficulties to solve such problems ?

Wikipedia reference
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MOTIVATION FORMALIZATION GEOMETRY HINTS

THE MONTY HALL PROBLEM (SIMULATION)

# Monty Ha l l prob l em
def game ( s t r a t e g y ) :

conf ig = [ ’ * ’ , ’ _ ’ , ’ _ ’ ]
random . s h u f f l e ( conf ig )
player = random . randint ( 0 , 2 )
i f s t r a t e g y == 0 : # s t r a t e g y k e e p

re turn conf ig [ player ] == ’ * ’
e l s e : # s t r a t e g y change

re turn conf ig [ player ] != ’ * ’
# bad i n i t i a l c h o i c e f o r t h e p l a y e r
# t h e TV e n t e r t a i n e r must open t h e empty door
# among t h e two d o o r s t h e r ema in ing i s winning

def experiment ( sample_size =1000 , s t r a t e g y = 0 ) :
sample = [ game ( s t r a t e g y ) f o r _ in range ( sample_size ) ]
re turn sample . count ( True )/ len ( sample )

## i n f o r m a l t e s t s
sample_size = 100000
p r i n t ( " s t r a t e g y keep , gain p r o b a b i l i t y " , experiment ( sample_size , 0 ) )
p r i n t ( " s t r a t e g y change , gain p r o b a b i l i t y " , experiment ( sample_size , 1 ) )
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MOTIVATION FORMALIZATION GEOMETRY HINTS

THE CONTROL OF DEMOGRAPHY

In some country, the government try to control the number of births in the country.
There are several strategies.

Exercice 4a

Only one birth per family is allowed.
Are there more male births than female on average ?

Exercice 4b

Families are allowed to have a first child, if she is a girl they could have a second one.
Are there more male births than female on average ?

Exercice 4c

Families are allowed to have children, until they get a boy.
Are there more male births than female on average ?

Exercice 4d

What are the difficulties to solve such problems ?
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MOTIVATION FORMALIZATION GEOMETRY HINTS

THE CONTROL OF DEMOGRAPHY (SIMULATION)

# N a t a l i t y c o n t r o l
def b i r t h ( ) :

re turn random . choice ( [ ’B ’ , ’G ’ ] )

def family ( s i z e =None ) :
i = 1
r e s u l t = [ b i r t h ( ) ]
while r e s u l t [ −1] == ’G ’ and ( ( s i z e == None ) or ( i < s i z e ) ) :

i = i + 1
r e s u l t . append ( b i r t h ( ) )

re turn r e s u l t

def sample_famil ies ( s i z e = 2 , sample_size = 1 0 0 0 ) :
re turn [ family ( s i z e ) f o r _ in range ( sample_size ) ]

## i n f o r m a l t e s t s
s _ f = sample_famil ies ( 2 , 1 0 0 )
boys = sum ( [ x . count ( ’B ’ ) f o r x in s _ f ] )
g i r l s = sum ( [ x . count ( ’G ’ ) f o r x in s _ f ] )
p r i n t ( boys /( boys + g i r l s ) )
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MOTIVATION FORMALIZATION GEOMETRY HINTS

ABSTRACT REPRESENTATION

Consider now a set Ω, a setA of parts of Ω is called a σ-field if it satisfies the following
properties :

1 Ω ∈ A;

2 If A ∈ A then A ∈ A (the complement of A in Ω is inA);

3 Let {An}n∈N a denumerable set of element ofA then⋃
n∈N

An ∈ A;

(σ-additivity property)

For a finite set Ω we generally useA as the set of all subsets of Ω, it assumes that we
could observe any value in Ω.

Interpretation

The set Ω models the real world, which is impossible to capture with all of its
complexity. Consequently we observe the reality with measurement tools and get
partial information on it. An event is a fact we could observe on the physical situation.
It assumes the existence of an experience that produces the event which is observable.

13 / 35Dice and other Stories
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MOTIVATION FORMALIZATION GEOMETRY HINTS

PROBABILITY

The idea of probability is to put some real value on events, then the probability
function is defined on the set of events and associate to each event a real in [0, 1].

Basic Axioms

P : A −→ [0, 1];
A 7−→ P(A).

It verifies the following rules :
1 P(Ω) = 1;

2 If {An}n∈N is a sequence of disjoint events (for all (i, j), Ai ∩ Aj = ∅) then

P
(⋃

n

An

)
=
∑

n

P(An);

σ-additivity property.

For a finite set Ω = {a1, · · · , an} andA the set of all subsets of Ω, the probability is
entirely defined from the probability of the elements of Ω, P({ai}).

For A ∈ A, we have P(A) =
∑
a∈A

P({a}).

14 / 35Dice and other Stories
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MOTIVATION FORMALIZATION GEOMETRY HINTS

PROBABILITY (2)

Probability properties

Let A and B events of Ω :
1 P(A ∪ B) = P(A) + P(B)− P(A ∩ B);

2 P(A) = 1− P(A);

3 P(∅) = 0;

4 If A ⊂ B, then P(A) 6 P(B) (P is a non-decreasing function).

5 If A ⊂ B, then P(B− A) = P(B)− P(A).

Interpretation

The semantic of a probability measure is related to experimentation. Consequently it
supposes that we can repeat infinitively experiments in the same conditions. Then the
probability of an event (observable) A is the abstraction of the proportion that this
event is realized in a large number of experiments. Consequently the probability is an
ideal proportion, assuming that we could produce an infinite number of experiments
and compute the asymptotic of frequencies.

15 / 35Dice and other Stories
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MOTIVATION FORMALIZATION GEOMETRY HINTS

CONDITIONAL PROBABILITY

Consider B such that P(B) > 0. The conditional probability of an event A knowing B,

P(A|B)
def
=

P(A ∩ B)

P(B)

defines a new probability measure on the set of eventA (check it as an exercise).

Interpretation

The meaning of conditional probability comes from the fact that we could observe
reality through several measurement instruments. The conditional probability
considers external information (event) which is given a-priori.
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MOTIVATION FORMALIZATION GEOMETRY HINTS

CONDITIONAL PROBABILITY (2)

The law of total probability (theorem)

Consider a partition of Ω in a countable set of observable events {Bn} (P(Bn) > 0).

Ω = B1 ∪ B2 ∪ · · · ∪ Bn ∪ · · · and for all i 6= j, Bi ∩ Bj = ∅

The law of total probability states that for all A ∈ A

P(A) =
∑

n
P(A|Bn)P(Bn).

The Bayes’ theorem reverse this scheme by

P(A|B) =
P(B|A)P(A)

P(B)
.

Interpretation

The law of total probability explains that if we have a set of disjoint alternatives, we
could compute the probability of an event by computing its probability knowing each
alternative and then combine all of them with the weight (probability) of each
alternative.

17 / 35Dice and other Stories
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MOTIVATION FORMALIZATION GEOMETRY HINTS

INDEPENDENCE

Two events A and B are independents if and only if they satisfy

P(A ∩ B) = P(A).P(B).

This is rewritten, assuming P(B) > 0

P(A|B) = P(A).

Interpretation

Independence is related to the causality problem. If two events are not independent we
could suspect a hidden relation between them, then an event could be the “cause” of
the other. On the other side two events are independent if in the observed
phenomenon there are no possible relations between the events.
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MOTIVATION FORMALIZATION GEOMETRY HINTS

RANDOM VARIABLES

Limits of the arbitrary set approach

I Ω is complex, too complex (related to an experimental procedure)

I synthesize the observations as values : numbers (in N, Z, R...) or vectors

I structured sets with algebraic operators

Abstraction of the real world by a mapping (random variable)

X : Ω −→ E

ω 7−→ X(ω)

such that event

{X ∈ B} ∆
= {ω ∈ Ω such that X(ω) ∈ B} ∈ A,

Standard description of the σ-field
I Generated by singletons for discrete values (all subsets are events)

I Generated by intervals (Borel σ-fields) for continuous sets (as R, Rn...)

Law (or probability distribution) of a random variable

P(X ∈ B) = P({ω ∈ Ω such that X(ω) ∈ B})

19 / 35Dice and other Stories
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MOTIVATION FORMALIZATION GEOMETRY HINTS

A MODELING EXAMPLE : RESULT OF A DICE THROW

Old fashion

I Ω = {1, 2, 3, 4, 5, 6} (rough simplification of reality)

I the events are all the subsets of Ω

I the probability law is uniform on all singletons

Naming the randomness

I Ω experiment (highly complex)

I A a σ-field on Ω (highly complex)

I P a probability onA
Assumption
I model the random experiment by a random variable X
I values of X are {1, ..., 6}
I and probability law uniform that is P(X = i) = 1

6
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MOTIVATION FORMALIZATION GEOMETRY HINTS

SYNTHESIS

Global picture

I Reality is hard to capture with common language

I Formal language of probability

I Algebraic rules

σ-algebra of events
independence and conditional probabilities

I Interpretation
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MOTIVATION FORMALIZATION GEOMETRY HINTS

1 MOTIVATION : Randomizing and Modeling

2 FORMALIZATION : the formal language of probability

3 GEOMETRY : random lines

4 HINTS AND DISCUSSION
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GENERATION OF GEOMETRICAL OBJECTS

Joseph Bertrand : generate a random chord

Compute the probability that the length of
the chord is greater than the length of the
side of an equilateral triangle inscribed in
the circle.

Alternatives

p =
1
2

p =
1
3

p =
1
4
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JOSEPH BERTRAND (1822-1900)

Joseph Louis François Bertrand, habituellement
appelé Joseph Bertrand, né le 11 mars 1822 à Paris,
mort le 3 avril 1900 à Paris, était un mathématicien,
historien des sciences et académicien français.

Enfant prodige, à onze ans il suit les cours de l’École Polytechnique en auditeur libre. Entre
onze et dix-sept ans il obtient deux baccalauréats, une licence et le doctorat ès sciences avec une
thèse sur la théorie mathématique de l’électricité, puis est admis premier au concours d’entrée
1839 de l’École Polytechnique. Il est ensuite reçu au concours de l’agrégation de mathématiques
des facultés et premier au premier concours d’agrégation de mathématiques des lycées avec
Charles Briot, ainsi qu’à l’École des mines. Il fut professeur de mathématiques au lycée
Saint-Louis, répétiteur, examinateur puis professeur d’analyse en 1852 à l’École polytechnique et
titulaire de la chaire de physique et mathématiques au Collège de France en 1862 en
remplacement de Jean-Baptiste Biot.
En 1845, en analysant une table de nombres premiers jusqu’à 6 000 000, il fait la conjecture qu’il y
a toujours au moins un nombre premier entre n et 2n-2 pour tout n plus grand que 3.
Tchebychev a démontré cette conjecture, le postulat de Bertrand, en 1850.
Pour l’étude de la convergence des series numériques, il mit au point un critère de comparaison
plus fin que le critère de Riemann.

∑ 1

nα log nβ
converge ssi (α, β) > (1, 1).
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MOTIVATION FORMALIZATION GEOMETRY HINTS

HINTS FOR SOLUTIONS EXERCISE1

Exercice 1a

Mr. and Mrs. Smith have two children, one is a boy, what is the probability that the
other is a girl ?

2nd
1st

Boy Girl

Boy X
Girl X

Exercice 1b

Mr. and Mrs. Smith have two children, the elder is a boy, what is the probability that
the younger is a girl ?

2nd
1st

Boy Girl

Boy
Girl X

Exercice 1c

What are the difficulties to solve such problems ?

return
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MOTIVATION FORMALIZATION GEOMETRY HINTS

PASCAL AND CHEVALIER DE MÉRÉ DISCUSSION
(SIMPLIFIED) HINTS

A Dice Game

I bet 1

I throw two dice and sum the results

I if the result is 11 or 12 you earn 11
(including your bet)

I if not you loose your bet.

Exercice 2a

The Chevalier de Méré says "playing this
game a sufficiently long time and I’ll get a
fortune” and Pascal argues the contrary.
Who is wrong and what were the two
arguments ?

Exercice 2b

What are the difficulties to solve such
problems ?
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I if the result is 11 or 12 you earn 11
(including your bet)

I if not you loose your bet.

Exercice 2a

The Chevalier de Méré says "playing this
game a sufficiently long time and I’ll get a
fortune” and Pascal argues the contrary.
Who is wrong and what were the two
arguments ?

Exercice 2b

What are the difficulties to solve such
problems ?

Intuition

2nd
1st

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

I Probability to win : 3
36 = 1

12

I Expected gain :
11× 1

12 + 0× 11
12 − 1 = − 1

12

I On average you loose 1
12 per game
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MOTIVATION FORMALIZATION GEOMETRY HINTS

FORMAL PROOF

Step 1 : The Model (and the question)

Denote by X (resp. Y) the random variable representing the result of the first (resp.
second) dice.
Statistical Hypothesis: X and Y have the same probability law, with a uniform
distribution on {1, 2, 3, 4, 5, 6} and are independent. Denote by S = X + Y.
Question : Compute the probability that S is 11 or 12.

Step 2 : Answer the question

We compute the law of S, using some algebra, for i ∈ {2, · · · , 12}

P(S = i) = P(X + Y = i) =
∑

k
P(X = k, Y = i − k)(rule of sum of disjoint subsets)

=
∑

k
P(X = k)P(Y = i − k)(independence of X and Y)

applying to i = 11 and i = 12

P(S = 11) = P(X = 5)P(Y = 6) + P(X = 6)P(Y = 5) =
1

6

1

6
+

1

6

1

6
=

2

36

P(S = 12) = P(X = 6)P(Y = 6) =
1

6

1

6
=

1

36

Step 3 : Interpretation

The average gain considering a large number of games is − 1
12
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MOTIVATION FORMALIZATION GEOMETRY HINTS

QUESTIONS

Uniformity problem

The modeling error was to suppose that the result of the sum is uniformly distributed
as the two dice are. To help Chevalier de Méré, could you build two different biased
dice (both faces are {1, 2, 3, 4, 5, 6}) so that the result of the sum is uniformly
distributed.

Follow the 3 steps.
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ELEMENTS OF PROOF

Step 1 : Modeling

Model the result of the first dice (resp second) by a random variable X (resp Y) with
value in {1, 2, 3, 4, 5, 6}. The dices are biased so we define the probability law for each
as pi = P(X = i) and qi = P(Y = i) for i ∈ {1, 2, 3, 4, 5, 6}.
Assumption: X and Y are independent

Step 2 : Analysis of the formal model

Th probability of each cell should be computed

Y
Y 1 2 3 4 5 6

p1 p2 p3 p4 p5 p6
1 q1 2 3 4 5 6 7
2 q2 3 4 5 6 7 8
3 q3 4 5 6 7 8 9
4 q4 5 6 7 8 9 10
5 q5 6 7 8 9 10 11
6 q6 7 8 9 10 11 12

Convolution of the probability distributions

Probabilities (using
independence)

i P(X + Y = i)
2 p1q1
3 p1q2 + p2q1
4 p1q3 + p2q2 + p3q1
5 p1q4 + p2q3 + p3q2 + p4q1
6 p1q5 + p2q4 + p3q3 + p4q2

+p5q1
7 p1q6 + p2q5 + p3q4 + p4q3

+p5q2 + p6q1
8 p2q6 + p3q5 + p4q4 + p5q3

+p6q2
9 p3q6 + p4q5 + p5q4 + p6q3
10 p4q6 + p5q5 + p6q4
11 p5q6 + p6q5
12 p6q6
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ELEMENTS OF PROOF (2)

The question

We have to find the unknown p1, · · · , p6 and q1, · · · , q6 such that for all i

P(X + Y = i) =
1
11

with the constraints

0 6 pi, qi 6 1 and p1 + · · ·+ p6 = q1 + · · ·+ q6 = 1 (probability)

Remark : 11 equations + 2 (constraints) for 12 unknown, the system is over constrained
and we could suspect that there are no solutions... (intuition)

Some algebra and analysis

Explain that p1, q1, p6, q6 are strictly positive
q1 = 1

11p1
and q6 = 1

11p6

P(X + Y = 7) = p1q6 + p2q5 + p3q4 + p4q3 + p5q2 + p6q1

> p1q6 + p6q1 =
1

11

(
p1

p6
+

p6

p1

)
>

1
11

because either
p1

p6
or

p6

p1
is strictly greater than 1
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MOTIVATION FORMALIZATION GEOMETRY HINTS

ELEMENTS OF PROOF (3)

Step 3 : Interpretation

Following the constraints we deduce that P(X + Y = 7) > 1
11 , so it is impossible to

biase the dice such that the sum follow a uniform distribution.

Open questions

1 Could this result be general with dice with n faces ?

2 The proof looks like a trick, is it possible to find a general way to solve such problems ?

3 Is it possible to release the independence assumption ? That is for example if the bias of the
second dice depends on the result of the first dice ?

4 Is it possible to change the values on the faces of the dice so that the sum follow the same
distribution as the sum of two regular dice ?
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ELEMENTS OF PROOF (3)

Step 3 : Interpretation

Following the constraints we deduce that P(X + Y = 7) > 1
11 , so it is impossible to

biase the dice such that the sum follow a uniform distribution.
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ANOTHER GAME
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Rules

I Choose one of the dice
I I choose another one

Throw your dice as I do for my dice, the best score wins the play
Repeat the play
until some end

analyse this game
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